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An exact periodic solution of the unsteady energy equation for an incompressible 
fluid with constant properties is derived to illustrate the effect of an oscillation 
through the viscous dissipation on a temperature field. The flow field used here 
is a generalization of the well-known Couette flow solution of steady flow, in 
which one wall is at  rest and the other wall oscillates in its own plane about a 
constant mean velocity. The solution is subject to two boundary conditions that 
correspond to the heat-transfer and thermometer problems. In order to have 
some suggestions about the approximate solutions, the solution is compared 
with its own approximate form. The temperature field consists of a time-mean, 
first and second harmonic fluctuation. The time-mean temperature profiles show 
the large influence of oscillation. The time-mean heat flux into or the time-mean 
temperature of the oscillating wall increases with frequency, and is ultimately 
proportional to the square root of the frequency. In  5 4 the present exact solution 
of the Couette flow is oompared with the formerly obtained approximate solution 
of the flat plate boundary-layer flow in terms of the wall characteristic values 
at high frequencies. 

1. Introduction 
After the initiation by Lighthill (1954) there have been many works on the 

subject of laminar boundary layers which have a regular fluctuating flow super- 
imposed on the mean flow. Owing to the mathematical difficulties most of them 
include restrictions on an oscillation amplitude or a frequency in the course of 
their theoretical developments. One of the exact solutions of the Navier-Stokes 
equation in which no restriction is placed on the amplitude and frequency was 
obtained by Stuart (1955) for the flow past a flat plate at  zero incidence with 
uniform suction (asymptotic suction flow). With viscous dissipation of kinetic 
energy taken into account, the corresponding exact solution of the energy equa- 
tion was also obtained by Stuart under a condition of zero heat transfer between 
the fluid and the wall. However, the heat-transfer problem was not studied. 

The result of Stuart shows that the time-mean temperature of the wall rises 
with frequency and is ultimately proportional to the square root of the frequency. 
This effect was confirmed approximately by Ishigaki (1971a) for the boundary- 
layer flow on a flat plate at  zero incidence without suction (Blasius flow). In the 
succeeding paper of Ishigaki (1971 b)  studying the corresponding heat-transfer 
problem it was approximately shown that the time-mean heat flux into the 
wall increases with frequency and is likewise ultimately proportional to the 
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square root of the frequency. These studies imply that the main effect of the 
fluctuating velocity field on the time-mean temperature field may be the genera- 
tion of heat through viscous dissipation, and we may encounter the practical 
problems of the thermal failure of a liquid rocket engine with a screaming com- 
bustion or of the resonance tube heating in which the effect of heat generation 
seems to be remarkable. 

It is of some value to have an exact periodic solution of the unsteady energy 
equation to illustrate the large influence of the oscillation through the viscous 
dissipation on the temperature field. The purpose of this paper is to describe 
such a solution that also applies to the heat-transfer problem. A base for the 
periodic solution given here is the well-known steady Couette flow solution of the 
Navier-Stokes equation and the corresponding exact solution of the steady 
energy equation was obtained by Schlichting (1951). The solution is subject to 
two boundary conditions, that the moving wall is kept constant temperature or 
is insulated to heat. 

2. Velocity field 
We consider the two-dimensional flow of an incompressible fluid with constant 

properties between two parallel flat walls, one of which is at rest, the other moving 
in its own plane with an unsteady velocity. We restrict our considerations to the 
case in which the flow is independent of the distance along the wall and thevelocity 
component normal to the wall is zero. Then the Navier-Stokes equation is 
written, in a co-ordinate system fixed with the wall moving with the velocity 
- U ( t ) ,  as 

I _ -  au dU 8% 
at at a y 2 '  

--+v- 

u =  0, at y = 0, u = U(t)  at y = h,J 

in which y denotes the normal distance from the moving wall, u the velocity 
along the wall, t the time, v the kinematic viscosity and h the distance between 
the two walls. We consider the case in which the unsteady velocity is given by 

U ( t )  = Uh{l + $s(eiwt + e- iwt ) ) ,  

u = Uh{fO(rr) + Hfl(7) eiWt +fl(rr) e-iwt)), 

(2) 

where w is the frequency and U,, e are constants. We then look for a solution of 
the form 

(3) 

in which 7 = y / h  and the tilde denotes a complex conjugate. Substituting (2), 
(3) into (1) and equating steady and periodic terms separately to zero, we have 

where c = wh2/v is the frequency parameter and primes denote differentiation 
with respect to 7. The solutions are 

fo = 7, fl = 1 - cosh (ia)B 7 + coth (in)&. sinh (icr)* 7. (5) 
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0 1 2 3 4 5 6 

FIGURE 1. Profiles of fluctuating friction amplitude. 
lf'l 

The distribution of the magnitude of fluctuating velocity gradient I f ; l ,  which is 
directly related to the generation of heat, is shown in figure 1 for several values 
of a. The shear stress at  y = 0, rW = ,~d(&/ay)~,,,, is found to be 

rw = (pUh/h) (1 + +(A eZot + d e-iwt)}, 

A = (ia)*. coth (ia)$. where 

This is readily compared with i ts  own approximate form by expanding 

1 + Qia - & . ( ~ c T ) ~  + . . . (small a) ( 7  a) 

The second term in ( 7 b )  is of order (ir)!r.exp ( - 2(i(+)*) and decreases rapidly 
for large a. The comparison between the exact expression and the combination 

A = L S +  ... (large CT). (7 b)  
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FIGURE 2. Skin friction amplitude and phase angle plotted against the 
frequency parameter. 
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of low- and high-frequency approximations is shown in figure 2 for the amplitude 
and phase angle of the fluctuating shear stress at y = 0. It can be found that the 
phase advance $A = tan-l(A,/A,), which is asymptotically given to be 4 5 O ,  
slightly overshoots at the intermediate values of cr. 

3. Temperature field 

is given by 
Under the flow condition of 3 2 the equation for the temperature distribution 

in which x denotes the distance along the wall, T the temperature, K the thermal 
diffusivity and c the specific heat. Simple solutions are obtained when it is 
postulated that the temperature of the resting upper wall is constant, the tem- 
perature of the moving lower wall is constant (isothermal lower wall, say) or the 
lower wall is insulated to heat (adiabatic lower wall, say). Then the equation (8) 
is subject to the following boundary conditions: 

T = T, or aT/ay = 0 at y = 0, T = Th at y = h. (9) 

With these boundary conditions (8) has a solution which is independent of x. 
Then the convection term vanishes and the resulting temperature distribution 
is due to the generation of heat through friction and the conduction in the trans- 
verse direction. Thus we have 

Substituting (3) into (lo), it can be seen that the exact solution for the temperature 
distribution is of the form 

(11) T(7)  = To(q) + &(Tl(7) eiWt+ pl(7) e-iwt) + +e2(T2(y) e2iWt+ 2 ( 7) e-2iot 1. 
Equating the harmonic coefficients to zero, we have 

TI; = - ( Pr U ~ / C )  (fA2 + if:), (12) 

(13) 

1141 

Ti -iPrcrT, = - (Pr Ui / c )  f ;  f i, 
T;- 2iPrcrT, = - (Pr Uh/c),fi2, 

where Pr = V / K  is the Prandtl number. There are two equations conjugate to 
(13) and (14). The boundary conditions are 

] (15) 
To = T,, TI = T2 = 0, or Th = T ;  = TS = 0 at  7 = 0, 

To = Th, Tl = T2 = 0 at  7 = 1. 

Substituting (5) into (12), (13) and (14), we obtain the solutions which satisfy (15). 
The solution of (12) for an isothermal lower wall gives the time-mean temper- 

ature distribution to be 

(T'-T')/(T!-Th) = 1 - 7 + 4Pr. E c { ~  - r2 + @((8( 1 - 7) - a&)} (16) 
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where Ec = U72,/c(Tw - Th) is the Eckert number and the symbol a is given by 

a = cosh (2a)9 7 - cos (2a ) i  7 - (2/p) (sinh (20-)4. sinh (2a)4 7 

+~in(2a)J.sin(2a)67)+(1//3~) (sinh2(2a)J+sin2(2g)*) 

x (cosh (2a)By - cos (2a)97), (17a) 

(17 b )  in which 

The temperature distribution (16) consists of the following three terms: (i) linear 
distribution in the fluid at  rest, (ii) parabolic distribution due to the frictional 
heating in the absence of oscillation, (iii) distribution due to the frictional heating 
caused by the wall oscillation. When the two walls have an equal temperature 
(T! = Th), heat conduction between the walls does not take place and (16) leads to 

p = Gosh ( 2 ~ ) *  - cos (2g)*. 

To - Th = (Pr U;/~C) (7 - 72 + e2((S( 1 - 7) - $a)}. (18) 

1.0 

9 0.5 

n 
0.1 0.2 0.3 

G(9)  
FIGURE 3. Plots of the frequency dependent function G ( 7 ) .  

The frequency dependent part, G(7) = (S(1- 7) - $a, is shown in figure 3 for 
several values of a. When the oscillation is quasi-steady (a = O ) ,  the highest 
temperature created by the frictional heating occurs at  the centre. It occurs 
nearer to the lower wall as a becomes larger, being readily anticipated from the 
friction distribution in figure 1. For the case Pr . Ec = 1.0 and B = 2.0 the time- 
mean temperature distribution (16) is shown in figure 4 by solid lines, the dotted 
line in the figure being that without oscillation (E = 0) .  

The solution of (12) for an adiabatic lower wall gives the time-mean temperature 
distribution to be 

To - Th = (PY U?J2c) [l - 7' + E'{( 1/p) (1 - 7) (+a)* 
x (sinh (20-)4+sin ( 2 4 4 )  -$a}], (19) 

where a and /i' are already given by (17a, a). For the case E = 1-0 the time-mean 
temperature distribution is shown in figure 5, the dotted line being that without 
oscillation. Figures 4 and 5 show that when the oscillation is present the generation 
of heat due to the friction exerts a large influence on the time-mean temperature 
field. 
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FIGURE 4. Temperature profiles for the case of the isothermal lower 
wall. Pr Ec = 1.0; -, E = 2.0; - - -  , I ? =  0. 

Pr U;2/2c 

FIGURE 5. Temperature profiles for the case of an adiabatic lower 
wall. -, E = 1.0. - _ -  , c = o .  

In  these cases the characteristic values a t  y = 0 are represented by 

T;(O)/(T,-T,) = - 1 +&PrEc( l  +ezB(a)) (isothermal lower wall), (20) 

(21) To(0) = Th+ (Pr Ua/2c) (1 +e2B(a)) (adiabatic lower wall), 

where B(a) = (1//?) (&~)4(sinh(2a)P+sin(2a))-&. ( 2 2 )  

i+&u2+ ... (small a), (23 a)  

(&a)$ - & + . . . (large a). (23b)  

For small and large values of ( 2 2 )  takes the following forms: 

B(a) = 
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The frequency dependent function B(a) given by (22) is shown in figure 6 by a 
solid line and the approximate forms are shown by dotted lines, the first term 
only in (23b)  being also shown by broken line. This comparison shows that the 
inclusion of the second term in the high-frequency approximation yields a more 
accurate formula, and this suggests that the corresponding high-frequency 
approximate solutions of the flat plate boundary-layer flow (Ishigaki 1971 a, b )  
must be taken up to the second term. 

I I I 1 
0 10 20 

FIGURE 6. Plot of B against frequency parameter. 

U 

The solution of (13) is of the form 

Tl = (2PrUi/c)  [c,cosh(iPra)*g +c,sinh(iPra)*g+ (iv)-* 
x {sinh (iff)* g - coth (ia)+. cosh (ia)* q>] (24) 

and the coefficients are determined from the boundary conditions to  be 

1 
c -  coth (icr)*, 

c -  

( l -Pr ) ( ia )*  

- (1 -Pr) (ia)t 
1 

{cosech (ia)3. cosech (iPrcr)*- coth(ia)*. coth (iPrn)i}j 

for an isothermal lower wall, and 

1 
c -  (tanh (iPra)i+Pr&cosech(ia)4.sech (iPra)*), - (1 - Pr) (iPra)i  

c2 = - ( l -Pr)( iPra)* 
1 

for an adiabatic lower wall. Then the characteristic wall value for an isothermal 
lower wall is given by 

in which 
Ti(O)/(T,- Th) = @.EcC(r),  (27a) 

G ( a )  = (4/(1-Pr)){l  +Pr*(cosech(ia)*.cosech(iPra)* 
-coth(ia)$.coth(iPra)a)}. ( 2 7 b )  
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For small and large values of cr (27b) takes the following forms: 

C = {  2+9(1-Pr)ia-&,(l-Pr2) (ia)2+ ... (small cr), (28a) 

4/(1 +Pri)+ ... (large cr). (28b) 

The wall value for an adiabatic lower wall is given by 

in which 
T,(0) = (Pr U i / 2 c ) .  D(u),  (29aj 

{tanh (i Pra)& + Pr)(cosech (ia)* 
4 

D(w) = 
(1 - Pr) (iPrcr)fr 

x sech (iPrcr)* - coth (i(~)$)}. (29b) 
For small and large values of cr ( 2 9 b )  takes the following forms: 

2 + 6( 1 - 5Pr) icr - &(3 + lOPr - 61Pr2) (icr), + . .. (small ( T ) ~  (30a) 

4/(1+Pr*) (iPru)b+ ... (large (T). (30b) 

For Pr = 0.72 the amplitude and phase angle of first harmonic fluctuations are 
shown in figures 7 and 8 by solid lines, dotted lines denoting the approximate 
values calculated from (28) and (30). Figure 7 shows that the first harmonic 
fluctuation of heat transfer has a phase lead a t  low frequencies and has a phase 
lag a t  moderate frequencies, being in phase with the wall oscillation a t  high 
frequencies. Figure 8 shows that the first harmonic fluctuation of the adiabatic 
wall temperature always lags behind the wall oscillation and this phase lag 
approaches 45" at high frequencies. 

The solution of (14) is of the form 

T, = (U$/8c) [c3cosh(2iPrcr)~.r,3+c4sinh(2iPrcr)~.7+coth2(icr)B- 1 

D = {  

-(Pr/(2-Pr)){(coth2 (icr)t+ l)cosh(2icr)~.~-2coth(icr)~.sinh(2icr)~.~}], 
(31) 

and the coefficients are determined from the boundary conditions to be 

c3 = 1 - coth2 (W)3 + (Pr/(2 - Pr)) (1 + eoth2 (iaffr), 

c4 = (coth2(icr)*- 1) (coth(2iPrcr)$-cosech(BiPra)4)+(4Pr/(Pr-2)) 
x cosh2 (ia)*. cosech (2iPrcr)t + (Pr/(Pr - 2)) (coth2 (;a)$ + 1) 

x (coth (2iPrcr)i - cosh (2 ( i a ) * )  cosech (2iPrcr)t), (32) 
for an isothermal lower wall and 

c3 = (1 -coth2(icr)*).sech(2iPrcr)++(2(2Pr)i/(2-Pr))coth ( icr )h  

x tanh (BiPrcr)*+ (Pr/(2-Pr)){(coth2(icr)*+ l)cosli(2(ia)t) 

- 4 cosh2 (icr)&}sech (2iPru)*, 

c4 = (2(2Pr)*/(Pr- 2)) coth ( ic r )$ ,  (33) 

€or adiabatic lower 
wall is given as 

where 

wall. Then the  characteristic wall value €or isothermal lower 

TL(O)/(T!-T,) = $2'~. Ec.E(a),  (34a) 

coth (icr)t) , 
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FIGURE 7. Amplitude and phase angle of the first harmonic fluctuation of heat transfer, 
Pr = 0-72. 
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FIGKRE 8. Amplitude and phaso angle of tho first harmonic fluctuation 
of adiabatic wall temperature, Pr = 0.72. 

U 

c4 being given by ( 3 2 ) .  For small and large values of o-, ( 3 4 b )  takes the following 
forms: 

(small a), ( 3 5 a )  

= (ia)4,/24(2& + ~ r t )  + . . . (large a). ( 3 5 b )  

E = $+A( 1 - Pr) ia +&(llPr2 + 55Pr - 58)  (i@ + . .. 

The wall value for an adiabatic lower wall is given as 

T,(O) = (Pr Ui/2C) P(a),  
Pr 

where B(a) = c3 + coth2 (ia)l- 1 - - 
4Pr 2 - P r  

c3 being given by ( 3 3 ) .  For small and large values of a, ( 3 6 b )  takes the following 
forms : 

F = $ + L( 12 1 - 5Pr) ia + &( 6 1 Pr2 - lOPr + 1 )  ( i a ) 2  + . . . (small a), (37 a )  
(large a). ( 3 7 6 )  

For Pr = 0.72 the amplitude and phase angle of the second harmonics of the wall 
values are shown in figures 9 and 10 by solid lines, approximate values being 

= 1/2~r4(2t  + Pr4) + . . . 
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shown by dotted lines. In figure 10 the considerable phase lag of the adiabatic 
wall temperature fluctuation at  lower frequencies is noted. 

IEl 
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40 ' 
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FIGWRE 9. Amplitude and phase angle of the second harmonic fluctuation 
of heat transfer, Pr = 0.72. 
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FIGURE 10. Amplitude and phase angle of the second harmonic fluctuation 
of adiabatic wall temperature, Pr = 0.72. 

4. Discussion 
The results obtained in § 3 illustrate the influence of oscillation through the 

viscous dissipation on the temperature field. At high frequencies the time-mean 
and second harmonic components of the temperature field are greatly influenced. 
In  particular, the time-mean effect is of practical importance for the considera- 
tions of cooling problems and of fluid temperature measurement in the presence 
of intense flow oscillation of high frequency. Thus a note on the time-mean results 
may be helpful. When the lower wall temperature is higher than the upper wall 
temperature (Tw > T1J, heat flows from the lower wall t o  the fluid only when the 
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parameters Pr . Ec, e and u do not exceed certain values. A reversal of heat flow 
direction at the lower wall occurs when the temperature gradient there changes 
sign. Thus it is seen from (20) that the following inequality applies to the con- 
dition of heat flowing from the lower wall to the fluid: 

2 > Pr.Ec(1 +e2B(u)). (38a) 

The above criterion for cooling of the lower wall is simplified if the adiabatic 
wall temperature T, defined by (21) is introduced. We then have 

T, > T,. (38b)  

When Th > T,, the heat flux into the lower wall increases greatly because the 
heat generated by friction is superimposed on the conducting heat, and we can 
see a practical example in the drastic increase of heat flux from hot gas to engine 
wall when high-frequency oscillatory combustion occurs in liquid rocket engines. 

Next, it is intended to compare the present results with the other available 
results of Blasius flow and asymptotic suction flow. In the problem of an in- 
compressible periodic flow, the thickness of the Stokes layer or the penetration 
depth, So - (v/o)3, plays the role of a boundary-layer thickness. When a steady 
stream is present the original unperturbed boundary layer (thickness 8,) and 
the Stokes layer co-exist and interact, the square of the thickness ratio, (SJSo)2, 
being equivalent to the frequency parameter. When the frequency parameter 
is large the essential character of the flow field will be of the Stokes type regardless 
of the original boundary layer. Therefore we make comparison of the temperature 
fields in terms of the asymptotic expressions of wall values for high frequency. 
If we extract only the terms associated with oscillation the present exact solution 
of Couette flow for an isothermal lower wall gives the asymptotic form to be 

.cos(2wt+&n) , (39) 1 4e &2a* 
cos wt + - T'(0) N - [ez(*u)3+- 

2c 1+Pd 2t  + Prt 
Pr Uj 

and 

for an adiabatic lower wall. The approximate solution of Blasius flow in which 
the outer flow velocity is given by Urn( 1 + E cos ot) gives the temperature gradient 
at  the wall, Tk(0) for an isothermal flat plate to be (Ishigaki 1971 b )  

1 2 +  

23 + Pr: 
COS wt + - & up cos(2wt+&r) , (41) 

in which Urn is constant, up = wx/U, (x is the distance along the wall from the 
leading edge) and f"(0) = 1.2326. The corresponding approximate solution for 
an adiabatic flat plate gives the wall temperature T,(O) to be (Ishigaki 1971~)  

in which P,(O) is the function of Pr only. The exact solution for asymptotic 
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suction flow in which the outer flow velocity is given by Us( 1 + E cos w t )  gives 
the adiabatic wall temperature q ( 0 )  to be (Stuart 1955) 

in which U, is constant and a, = wvjv: (v, is the constant suction velocity). 
As the unperturbed original boundary-layer thickness 8, is proportional to 
(ux/U,)& in Blasius flow and to v/v, in asymptotic suction flow, the frequency 
parameters up and us are proportional to (81/80)2, u being proportional to ( / ~ / 8 ~ ) ~ .  
(The detailed discussion on the frequency parameter is given by Stuart (1963).) 
Thus we can see the correspondences of the magnitude and phase angle between 
(39) and (41) or among (40), (42) and (43). Expressions (39), (40) and (43) are 
the exact results and do not contain harmonics higher than the second. Equa- 
tions (41) and (42) do contain them, but they are expected to be of a much smaller 
order of magnitude for high-frequency oscillation. 
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